Stochastic source term estimation of HAZMAT releases: algorithms and uncertainty
نویسندگان
چکیده
Source term estimation (STE) of hazardous material (HAZMAT) releases is critical for emergency response. Such problem is usually solved with the aid of atmospheric dispersion modelling and inversion algorithms accompanied with a variety of uncertainty, including uncertainty in atmospheric dispersion models, uncertainty in meteorological data, uncertainty in measurement process and uncertainty in inversion algorithms. Bayesian inference methods provide a unified framework for solving STE problem and quantifying the uncertainty at the same time. In this paper, three stochastic methods for STE, namely Markov chain Monte Carlo (MCMC), sequential Monte Carlo (SMC) and ensemble Kalman filter (EnKF), are compared in accuracy, time consumption as well as the quantification of uncertainty, based on which a kind of flip ambiguity phenomenon caused by various uncertainty in STE problems is pointed out. The advantage of non-Gaussian estimation methods like SMC is emphasized.
منابع مشابه
Uncertainty in fundamental natural frequency estimation for alluvial deposits
Seismic waves are filtered as they pass through soil layers, from bedrock to surface. Frequencies and amplitudes of the response wave are affected due to this filtration effect and this will result in different ground motion characteristics. Therefore, it is important to consider the impact of the soil properties on the evaluation of earthquake ground motions for the design of structures. Soil ...
متن کاملApproximate Bayesian Computation for Source Term Estimation
Bayesian inference is a vital tool for consistent manipulation of the uncertainty that is present in many military scenarios. However, in some highly complex environments, it is hard to write down an analytic form for the likelihood function that underlies Bayesian inference. Approximate Bayesian computation (ABC) algorithms address this difficulty by enabling one to proceed without analyticall...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملA Bi-objective Stochastic Optimization Model for Humanitarian Relief Chain by Using Evolutionary Algorithms
Due to the increasing amount of natural disasters such as earthquakes and floods and unnatural disasters such as war and terrorist attacks, Humanitarian Relief Chain (HRC) is taken into consideration of most countries. Besides, this paper aims to contribute humanitarian relief chains under uncertainty. In this paper, we address a humanitarian logistics network design problem including local dis...
متن کاملPrediction and evaluation of runoff data in south of Qazvin watershed, using a fuzzy logic technique
The important criteria for designing in the most of hydrologic and hydraulic construction projects are based on runoff or peak-flow of water. Mostly, this measure and criterion is calculated or estimated by stochastic data. Another feature of these data that are used in watershed hydrological studies is their impreciseness. Therefore, in this study, in order to deal with uncertainty and impreci...
متن کامل